Factorize: x12 - y12
Question
Answer:
\(x^{12}-y^{12}\) \(=(x^{6})^{2}-(y^{6})^{2}=(x^{6}+y^{6})(x^{6}-y^{6})\) \(=\{ (x^{2})^{3}+(y^{2})^{3}\} \{ (x^{3})^{2}-(y^{3})^{2}\} \) \(=(x^{2}+y^{2})(x^{4}-x^{2}y^{2}+y^{4})(x^{3}-y^{3})(x^{3}+y^{3})\) \(=(x^{2}+y^{2})(x^{4}-x^{2}y^{2}+y^{4})(x-y)(x^{2}+xy+y^{2})(x^{2}-xy+y^{2})\)\(=(x-y)(x+y)(x^{2}+y^{2})(x^{2}+xy+y^{2})(x^{2}-xy+y^{2})(x^{4}-x^{2}y^{2}+y^{4})\)
solved
algebra
11 months ago
8111