According to the Census Bureau, 3.36 people reside in the typical American household. A sample of 25 households in Arizona retirement communities showed the mean number of residents per household was 2.71 residents. The standard deviation of this sample was 1.10 residents. At the .10 significance level, is it reasonable to conclude the mean number of residents in the retirement community household is less than 3.36 persons? State the null hypothesis and the alternate hypothesis

Question
Answer:
Answer:We conclude that  the mean number of residents in the retirement community household is less than 3.36 persons.Step-by-step explanation:We are given the following in the question:  Population mean, μ = 3.36Sample mean, [tex]\bar{x}[/tex] = 2.71Sample size, n =  25Alpha, α = 0.10Sample standard deviation, s = 1.10First, we design the null and the alternate hypothesis [tex]H_{0}: \mu = 3.36\text{ residents per household}\\H_A: \mu < 3.36\text{ residents per household}[/tex] We use One-tailed(left) t test to perform this hypothesis. Formula: [tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex] Putting all the values, we have [tex]t_{stat} = \displaystyle\frac{2.71 - 3.36}{\frac{1.10}{\sqrt{25}} } = -2.95[/tex] Now, [tex]t_{critical} \text{ at 0.10 level of significance, 24 degree of freedom } =-1.31[/tex] Since,                   [tex]t_{stat} < t_{critical}[/tex] We reject the null hypothesis and fail to accept it.Thus, we conclude that  the mean number of residents in the retirement community household is less than 3.36 persons.
solved
general 10 months ago 9678