Determine which of the following situations requires the distributive property in order to simplify the expression. Select all situations that apply.x(2y)9(x ∙ y)9(x + y)(7 ∙ a)(b)(7 - a)(b)(2 ∙ x) ∙ y

Question
Answer:
Answers 9(x + y) (7 - a)(b)   The Distributive Property is used in algebraic expressions to multiply a single term and two or more terms which are inside a set of parentheses.   In the case of x(2y), there is only one term inside the parenthesis

In the case of 9(x ∙ y), the distributive property is not used because (x ∙ y) = xy which means only one term will be multiplied by the term outside the parenthesis (9)   In the case of 9(x + y), the distributive property is used because the two terms in the parenthesis (x and y) will be multiplied by the term outside the parenthesis (9) 9(x + y) = 9*x + 9*y (by applying the distributive property)   In the case of (7 ∙ a)(b), the distributive property is not used because (7 ∙ a) = 7a which means only one term will be multiplied by the term outside the parenthesis (b)   In the case of (7 - a)(b), the distributive property is used because the two terms in the parenthesis (7 and -a) will be multiplied by the term outside the parenthesis (b) (7 - a)(b) = 7*b - a*b (by applying the distributive property)   In the case of (2 ∙ x) ∙ y, the distributive property is not used because (2 ∙ x) = 2x which means only one term will be multiplied by the term outside the parenthesis (y)
solved
general 11 months ago 1138