Evaluate the surface integral. s x ds, s is the part of the plane 18x + 9y + z = 18 that lies in the first octant.
Question
Answer:
In the first octant, the given plane forms a triangle with vertices corresponding to the plane's intercepts along each axis.[tex](x,0,0)\implies 18x+9\cdot0+0=18\implies x=1[/tex]
[tex](0,y,0)\implies 18\cdot0+9y+0=18\implies y=2[/tex]
[tex](0,0,z)\implies 18\cdot0+9\cdot0+z=18\implies z=18[/tex]
Now that we know the vertices of the surface [tex]\mathcal S[/tex], we can parameterize it by
[tex]\mathbf s(u,v)=\langle(1-u)(1-v),2u(1-v),18v\rangle[/tex]
where [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. The surface element is
[tex]\mathrm dS=\|\mathbf s_u\times\mathbf s_v\|\,\mathrm du\,\mathrm dv=2\sqrt{406}(1-v)\,\mathrm du\,\mathrm dv[/tex]
With respect to our parameterization, we have [tex]x(u,v)=(1-u)(1-v)[/tex], so the surface integral is
[tex]\displaystyle\iint_{\mathcal S}x\,\mathrm dS=2\sqrt{406}\int_{u=0}^{u=1}\int_{v=0}^{v=1}(1-u)(1-v)^2\,\mathrm dv\,\mathrm du=\frac{\sqrt{406}}3[/tex]
solved
general
11 months ago
1790