f(x)=-10x^2-8x+13 find f(6-t)
Question
Answer:
To find f(6 - t), you need to substitute (6 - t) for x in the function f(x) = -10x^2 - 8x + 13 and then simplify.
f(x) = -10x^2 - 8x + 13
f(6 - t) = -10(6 - t)^2 - 8(6 - t) + 13
Now, expand and simplify:
f(6 - t) = -10(36 - 12t + t^2) - 48 + 8t + 13
Next, distribute the -10 through the parentheses:
f(6 - t) = -360 + 120t - 10t^2 - 48 + 8t + 13
Combine like terms:
f(6 - t) = -10t^2 + 120t - 395
So, f(6 - t) = -10t^2 + 120t - 395.
solved
general
11 months ago
2344