find the domain of f[tex]f(x) = \frac{x}{2x - 1} [/tex][tex]f(x) = \frac{2x - 7}{x ^{2} + 8x + 7} [/tex]
Question
Answer:
Answers:________________________________________________
Question 1) The domain of the function is:
" x = {x | x ≠ [tex] \frac{1}{2} [/tex]} " .
________________________________________________
Question 2) The domain of the function is:
" x = {x | x ≠ -7, -1 ]} " . "
________________________________________________
Explanations:
________________________________________________
Explanation for "Question 1" ;
The denominator cannot equal "0".
So; set the "denominator" equal to "0" ; as follows:
→ 2x - 1 = 0 ;
Add "1" to each side of the equation:
2x - 1 + 1 = 0 + 1 ;
2x = 1 ;
Divide each side of the equation by "2" ;
2x/2 = 1/2 ;
to get: "x = 1/2" .
________________________________________________________
Answer: The domain is: " {x | x ≠ [tex] \frac{1}{2} [/tex]} " .
________________________________________________________
Explanation for: "Question 2" )
________________________________________________________
The denominator cannot equal "0";
→ {since one cannot "divide by 0" } ;
→ So; set the "denominator" equal to "0" ;
→ (x² + 8x + 7) = 0 ; Factor:
___________________________________________
(x + 7) (x + 1) = 0 ;
x = -7 ; x = -1 ;
_____________________________________________
Answer:
_____________________________________________
The domain of the function is:
_____________________________________________
" x = {x | x ≠ -7, -1 ]} " .
_____________________________________________
solved
general
11 months ago
3061