Find the second derivative of log x

Question
Answer:
Answer:[tex]\displaystyle y'' = \frac{-1}{\ln(10)x^2}[/tex]General Formulas and Concepts:CalculusDifferentiationDerivativesDerivative NotationDerivative Property [Multiplied Constant]:                                                          [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]Basic Power Rule:f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Step-by-step explanation:Step 1: DefineIdentify[tex]\displaystyle y = \log (x)[/tex]Step 2: DifferentiateLogarithmic Differentiation:                                                                         [tex]\displaystyle y' = \frac{1}{\ln(10)x}[/tex]Derivative Property [Multiplied Constant]:                                                   [tex]\displaystyle y'' = \frac{1}{\ln 10} \frac{d}{dx} \bigg[ \frac{1}{x} \bigg][/tex]Basic Power Rule:                                                                                         [tex]\displaystyle y'' = \frac{-1}{\ln(10)x^2}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)Unit: Differentiation
solved
general 11 months ago 8187