If h(x) is the inverse of f(x) what is the value of h(f(x))?

Question
Answer:
[tex]h(f(x))[/tex] β‡’ [tex]x[/tex] Step-by-step explanation:In mathematics, an inverse function is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa, i.e., f(x) = y if and only if g = x. Here we have , h(x) is the inverse of f(x) .We need to find the value of h(f(x)) . Let's find out:Let inverse of [tex]f(x)[/tex] Β = [tex]f^{-1}(x)[/tex] , but according to question it's equivalent to h(x) i.e. [tex]h(x) = f^{-1}(x)[/tex] . Now, [tex]h(f(x))[/tex]β‡’ [tex]h(f(x))[/tex]putting value of f(x) in x at h(x) , i.e. [tex]h(x) = f^{-1}(x)[/tex] β‡’ [tex]f^{-1}(f(x))[/tex]Multiplication of [tex]f^{-1}[/tex] and [tex]f[/tex] is 1 , β‡’ [tex]x[/tex]Therefore, [tex]h(f(x))[/tex] β‡’ [tex]x[/tex] .
solved
general 11 months ago 4209