What is the constant speed of freddy and sam?

Question
Answer:
the constant speed, or "average rate of change" is their slope.

so  hmmm looking at Fred's graph, let's pick two points on the line, say 0,0 the origin and 8,2

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 0}}\quad ,&{{ 0}})\quad % (c,d) &({{8}}\quad ,&{{ 2}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{2-0}{8-0}\implies \cfrac{2}{8}\implies \cfrac{1}{4}[/tex]

now, for Sam, let's use the last two points in the table then,

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 20}}\quad ,&{{ 2\frac{1}{2}}})\quad % (c,d) &({{32}}\quad ,&{{ 4}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{4-2\frac{1}{2}}{32-20}\implies \cfrac{4-\frac{5}{2}}{32-20} \\\\\\ \cfrac{\quad \frac{8-5}{2}\quad }{12}\implies \cfrac{\quad \frac{3}{2}\quad }{\frac{12}{1}}\implies \cfrac{3}{2}\cdot \cfrac{1}{12}\implies \cfrac{1}{8}[/tex]
solved
general 10 months ago 6070