What is the form of the two squares identity?
Question
Answer:
Answer:DStep-by-step explanation:Consider all options:A. False, because [tex](a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\\ \\(ab-cd)^2+(ac+bd)^2=a^2b^2-2abcd+c^2d^2+a^2c^2+2abcd+b^2d^2=\\ =a^2b^2+c^2d^2+a^2c^2+b^2d^2\\ \\a^2c^2+a^2d^2+b^2c^2+b^2d^2\neq a^2b^2+c^2d^2+a^2c^2+b^2d^2[/tex]B. False, because [tex](a^2-b^2)(c^2+d^2)=a^2c^2+a^2d^2-b^2c^2-b^2d^2\\ \\(ac-bd)^2-(ad+bc)^2=a^2c^2-2abcd+b^2d^2+a^2d^2+2abcd+b^2c^2=\\=a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ \\a^2c^2+a^2d^2-b^2c^2-b^2d^2\neq a^2c^2+b^2d^2+a^2d^2+b^2c^2[/tex]C. False, because [tex](a^2+b^2)(c^2-d^2)=a^2c^2-a^2d^2+b^2c^2-b^2d^2\\ \\(ac+bd)^2-(ad+bc)^2=a^2c^2+2abcd+b^2d^2-a^2d^2-2abcd-b^2c^2=\\=a^2c^2+b^2d^2-a^2d^2-b^2c^2\\ \\a^2c^2-a^2d^2+b^2c^2-b^2d^2\neq a^2c^2+b^2d^2-a^2d^2-b^2c^2[/tex]D. True, because [tex](a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\\ \\(ac-bd)^2-(ad+bc)^2=a^2c^2-2abcd+b^2d^2+a^2d^2+2abcd+b^2c^2=\\=a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ \\a^2c^2+a^2d^2+b^2c^2+b^2d^2= a^2c^2+b^2d^2+a^2d^2+b^2c^2[/tex]
solved
general
11 months ago
9709