What statement correctly describes the key features of the graph of f(x) = 4(one half)x + 1 − 3?A. Y-intercept of (0, −1), starts up on the left, gets closer to y = −3 on the rightB. Y-intercept of (0, −1), starts down on the left, gets closer to y = −3 on the rightC. Y-intercept of (0, 1), starts up on the left, gets closer to y = −3 on the rightD. Y-intercept of (0, 1), starts down on the left, gets closer to y = −3 on the right

Question
Answer:
Answer: The correct option is B.Explanation:The given function is,[tex]f(x)=4(\frac{1}{2})^{(x+1)} -3[/tex]Put x=0 to find the y-intercept.[tex]f(x)=4(\frac{1}{2})^{(0+1)} -3[/tex][tex]f(x)=4(\frac{1}{2}) -3[/tex][tex]f(x)=2-3[/tex][tex]f(x)=-1[/tex]At x=0 the value of f(x) is -1, therefore the y- intercept is (0,-1).Since it is an exponential function in the form of,[tex]g(x)=ma^x+n[/tex]Where, 0<a<1, so,[tex]f(x)\rightarrow \infty\text{ as }x\rightarrow -\infty[/tex][tex]f(x)\rightarrow -3\text{ as }x\rightarrow \infty[/tex]Therefore the starts up on the left, gets closer to y = −3 on the right. So the option B is correct.
solved
general 11 months ago 3804