Write the complex number in the form a + bi. square root of six (cos 315° + i sin 315°) (2 points)
Question
Answer:
[tex]\bf z=\stackrel{r}{6}[cos(\stackrel{\theta }{315^o})+i~sin(\stackrel{\theta }{315^o})]\qquad
\begin{cases}
a=x=rcos(\theta )\\
b=y=rsin(\theta )\\
----------\\
a=6cos(315^o)\\
\qquad 6\left( \frac{\sqrt{2}}{2} \right)\\
\qquad 3\sqrt{2}\\
b=6sin(315^o)\\
\qquad 6\left( -\frac{\sqrt{2}}{2} \right)\\
\qquad -3\sqrt{2}
\end{cases}
\\\\\\
z=(~3\sqrt{2}~,~-3\sqrt{2}~)\implies z=3\sqrt{2}-3\sqrt{2}~i[/tex]
solved
general
11 months ago
7656