a line segment has endpoints s(-9, -4) and t (6,5). Point R lies on ST such that the ratio of SR to RT is 2:1 What are the coordinates of point R
Question
Answer:
[tex]\bf ~~~~~~~~~~~~\textit{internal division of a line segment}
\\\\\\
S(-9,-4)\qquad T(6,5)\qquad
\qquad \stackrel{\textit{ratio from S to T}}{2:1}
\\\\\\
\cfrac{S\underline{R}}{\underline{R} T} = \cfrac{2}{1}\implies \cfrac{S}{T} = \cfrac{2}{1}\implies 1S=2T\implies 1(-9,-5)=2(6,5)\\\\
-------------------------------[/tex][tex]\bf R=\left(\cfrac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \cfrac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\ -------------------------------\\\\ R=\left(\cfrac{(1\cdot -9)+(2\cdot 6)}{2+1}\quad ,\quad \cfrac{(1\cdot -5)+(2\cdot 5)}{2+1}\right) \\\\\\ R=\left(\cfrac{-9+12}{3}~~,~~\cfrac{-5+10}{3} \right)\implies R=\left(\cfrac{3}{3}~~,~~\cfrac{5}{3} \right) \\\\\\ R=\left(1~,~1\frac{2}{3} \right)[/tex]
solved
general
11 months ago
8668