A set of data follows a nonstandard normal distribution curve. Find the probability that a randomly selected value will be between 660 and 680 given a mean of 715 and a standard deviation of 24.A. 0.0611B. 0.7100C. 0.8300D. 0.9169
Question
Answer:
Answer:The probability that a randomly selected value will be between 660 and 680 is 0.0614Step-by-step explanation:we are given mean=715[tex]\mu=715[/tex]standard deviation =24[tex]\sigma=24[/tex]At x=660:[tex]z=\frac{x-\mu}{\sigma}[/tex]now, we can plug values[tex]z=\frac{660-715}{24}[/tex][tex]z=-2.29167[/tex]At x=680:[tex]z=\frac{x-\mu}{\sigma}[/tex]now, we can plug values[tex]z=\frac{680-715}{24}[/tex][tex]z=-1.45833[/tex]now, we can find probability[tex]P(-2.29167\leq z\leq -1.45833)[/tex]we can use table and we get [tex]P(-2.29167\leq z\leq -1.45833)=0.0614[/tex]
solved
general
11 months ago
3122