A store sells 2 1/4 pounds of mulch for every 1 1/2 pounds of gravel sold. The store sells 180 pounds of mulch and gravel combined. How many pounds of each item does the store sell?
Question
Answer:
Answer:The pounds of mulch the store sells are 108 and the pounds of gravel the store sells are 72.Step-by-step explanation:Letx -----> pounds of mulch the store sellsy ----> pounds of gravel the store sellswe know that[tex]x+y=180[/tex] -----> equation ARemember that[tex]2\frac{1}{4}\ lb=\frac{2*4+1}{4}=\frac{9}{4}\ lb[/tex][tex]1\frac{1}{2}\ lb=\frac{1*2+1}{2}=\frac{3}{2}\ lb[/tex]so[tex]\frac{x}{y}=\frac{(9/4)}{(3/2)}[/tex][tex]\frac{x}{y}=\frac{3}{2}[/tex][tex]x=\frac{3}{2}y[/tex] -----> equation Bsolve the system by substitutionsubstitute equation B in equation A[tex]\frac{3}{2}y+y=180[/tex]solve for y[tex]\frac{5}{2}y=180[/tex][tex]y=180(2)/5\\y=72[/tex]Find the value of x[tex]x=\frac{3}{2}(72)=108[/tex] The solution is the ordered pair (108,72)thereforeThe pounds of mulch the store sells are 108 and the pounds of gravel the store sells are 72.
solved
general
10 months ago
8002