Find the distance between points P(3, -8) Q(7,4). Round to the nearest tenth if necessary

Question
Answer:
To calculate the distance between two points, we can use a formula that is a variation Pythagorean Theorem. Look:
[tex]\mathsf{d=\sqrt{(x_Q-x_P)^2+(y_Q-y_P)^2}}[/tex]
"d" represents the distance and coordinates are expressed as follows: (x, y)
Let's go to the calculations.
[tex]\mathsf{d=\sqrt{(x_Q-x_P)^2+(y_Q-y_P)^2}}\\\\ \mathsf{d=\sqrt{(7-3)^2+(4-(-8))^2}}\\\\ \mathsf{d=\sqrt{(4)^2+(4+8)^2}}\\\\ \mathsf{d=\sqrt{16+(12)^2}}\\\\ \mathsf{d=\sqrt{16+144}}\\\\ \mathsf{d=\sqrt{160}}\\\\ \mathsf{d=12,649110640673...}\\\\ \underline{\mathsf{d\approxeq12,6}}[/tex]

The answer is 12,6 u.c.
solved
general 11 months ago 7132