Simplify this expression((a^8a^9)^1/7)/a^2The lesson this is from covers rational exponents if that helps.
Question
Answer:
[tex]\bf ~~~~~~~~~~~~\textit{negative exponents}\\\\
a^{-n} \implies \cfrac{1}{a^n}
\qquad \qquad
\cfrac{1}{a^n}\implies a^{-n}
\qquad \qquad
a^n\implies \cfrac{1}{a^{-n}}
\\\\\\
\textit{also recall that}\qquad a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n}
\qquad \qquad
\sqrt[ m]{a^ n}\implies a^{\frac{ n}{ m}}\\\\
-------------------------------\\\\[/tex][tex]\bf \cfrac{(a^8a^9)^{\frac{1}{7}}}{a^2}\implies \cfrac{(a^{8+9})^{\frac{1}{7}}}{a^2}\implies \cfrac{(a^{17})^{\frac{1}{7}}}{a^2}\implies \cfrac{a^{17\cdot \frac{1}{7}}}{a^2}\implies \cfrac{a^{\frac{17}{7}}}{a^2} \\\\\\ \cfrac{a^{\frac{17}{7}}}{1}\cdot \cfrac{1}{a^2}\implies a^{\frac{17}{7}}\cdot a^{-2}\implies a^{\frac{17}{7}-2}\implies a^{\frac{17-14}{7}}\implies a^{\frac{3}{7}}\implies \sqrt[7]{a^3}[/tex]
solved
general
11 months ago
1841