Suppose p(e) = 57⁄100 , p(fc ) = 7⁄20 , and p(f ∩ ec ) = 31⁄100. find p(e ∪ f).
Question
Answer:
By the inclusion/exclusion principle,[tex]\mathbb P(E\cup F)=\mathbb P(E)+\mathbb P(F)-\mathbb P(E\cap F)[/tex]
Recall the law of total probability:
[tex]\mathbb P(F)=\mathbb P(E\cap F)+\mathbb P(E^C\cap F)[/tex]
We're given
[tex]P(F^C)=\dfrac7{20}\implies\mathbb P(F)=1-\mathbb P(F^C)=\dfrac{13}{20}[/tex]
and so
[tex]\dfrac{13}{20}=\mathbb P(E\cap F)+\dfrac{31}{100}\implies\mathbb P(E\cap F)=\dfrac{17}{50}[/tex]
Now,
[tex]\mathbb P(E\cup F)=\dfrac{57}{100}+\dfrac{13}{20}-\dfrac{17}{50}=\dfrac{22}{25}[/tex]
solved
general
11 months ago
3817