The ΔPQR is right-angled at P, and PN is an altitude. If QN = 12 in and NR = 6 in, find PN, PQ, PR.
Question
Answer:
In the right triangle PQR:Hypotenuse: QR = QN + NR = 12 + 6 = 18 cm
PN² = QN · NR
PN² = 12 · 6 = 72
PN = √72 = √(36 · 2 ) = 6√2 cm
PQ² = (6√2)² + 12² = 72 + 144 = 216
PQ = √216 = √(36 · 6 ) = 6√6 cm
PR² = 18² - (6√6)² = 324 - 216 = 108
PR = √108 = √(36 · 3) = 6√3 cm
Answer:
PN = 6√2 cm,
PQ = 6√6 cm,
PR = 6√3 cm.
solved
general
11 months ago
2924