Type the correct answer for each. The point (x,√7/3) in the second quadrant corresponds to angle 0 on the unit circle. ________ 0=3√7 ________ 0=-√ 7/2

Question
Answer:
If point [tex]\left(x,\ \frac{\sqrt{7}}{3}\right)[/tex] is on the unit ircle, then:

[tex]x^2+\left( \frac{ \sqrt{7} }{3} \right)^2=1 \\ \\ \Rightarrow x^2+ \frac{7}{9} =1 \\ \\ \Rightarrow x^2=1- \frac{7}{9} = \frac{2}{9} \\ \\ \Rightarrow x= \sqrt{ \frac{2}{9} } = \frac{ \sqrt{2} }{3} [/tex]

Since, the point is in the second quadrant, x is negative.

Thus, [tex](x,\ y)=\left(x,\ \frac{\sqrt{7}}{3}\right)=\left(-\frac{ \sqrt{2} }{3},\ \frac{\sqrt{7}}{3}\right)[/tex]

Part A:

[tex]3 \sqrt{7} =6\left( \frac{ \sqrt{7} }{2} \right) \\ \\ =6\left( \frac{ \sqrt{7} }{3} \cdot \frac{3}{ \sqrt{2} } \right) \\ \\ =6\left( \frac{ \frac{ \sqrt{7} }{3} }{ \frac{ \sqrt{2} }{3} } \right)=-6\left( \frac{ \frac{ \sqrt{7} }{3} }{ -\frac{ \sqrt{2} }{3} } \right) \\ \\ =-6\left( \frac{y}{x} \right)=-6\tan\theta[/tex]

Therefore, [tex]-6\tan\theta=3\sqrt{7}[/tex].



Part B:

[tex]- \frac{ \sqrt{7} }{2} =- \frac{ \sqrt{7} }{3} \cdot \frac{3}{ \sqrt{2} } \\ \\ =- \frac{ \frac{ \sqrt{7} }{3} }{ \frac{ \sqrt{2} }{3} } = \frac{ \frac{ \sqrt{7} }{3} }{ -\frac{ \sqrt{2} }{3} } = \frac{y}{x} \\ \\ =\tan\theta[/tex]

Therefore, [tex]\tan\theta=- \frac{ \sqrt{7} }{2}[/tex]
solved
general 11 months ago 5906