what is the simplified form of the following expression?Assume a is greater/= 0, and c is greater/= 014(^4√a^5 b^2 c^4) -7ac(^4√ab^2)A) 7ac(^4√ab^2)B) 7(^4√ab^2)C) -7(^4√ab^2)D) -7ab(^4√ab^2)

Question
Answer:
Answer:Option (1) is correct.On simplifying [tex]14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}[/tex] we get, [tex]7ac\sqrt[4]{ab^2}[/tex]Step-by-step explanation:Consider the given expression,[tex]14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}[/tex]We have write the above expression in simplified form.Consider the first term,[tex]14\sqrt[4]{a^5b^2c^4}[/tex] can be written as ,[tex]14\sqrt[4]{a^5b^2c^4}=14\sqrt[4]{a^4ab^2c^4}[/tex]Taking a and c out the fourth root, we get,[tex]14\sqrt[4]{a^4ab^2c^4}=14ac\sqrt[4]{ab^2}[/tex]Now the expression becomes,[tex]14ac\sqrt[4]{ab^2} -7ac\sqrt[4]{ab^2}[/tex]Now we can simplify this, taking [tex]7ac\sqrt[4]{ab^2}[/tex] common from both the term, we get,[tex]7ac\sqrt[4]{ab^2}(2-1)[/tex]On solving we get, [tex]\rightarrow 7ac\sqrt[4]{ab^2}[/tex]Option (1) is correct.Thus, on simplifying [tex]14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}[/tex] we get, [tex]7ac\sqrt[4]{ab^2}[/tex]


solved
general 11 months ago 1928