Write an equation of the hyperbola given that the center is at (2, -3), the vertices are at (2, 3) and (2, - 9), and the foci are at (2, -3 ± 2√10
Question
Answer:
check the picture below.so, the hyperbola looks like so, clearly a = 6 from the traverse axis, and the "c" distance from the center to a focus has to be from -3±c, as aforementioned above, the tell-tale is that part, therefore, we can see that c = 2√(10).
because the hyperbola opens vertically, the fraction with the positive sign will be the one with the "y" in it, like you see it in the picture, so without further adieu,
[tex]\bf \textit{hyperbolas, vertical traverse axis } \\\\ \cfrac{(y- k)^2}{ a^2}-\cfrac{(x- h)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h, k\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ asymptotes\quad y= k\pm \cfrac{a}{b}(x- h) \end{cases}\\\\ -------------------------------[/tex]
[tex]\bf \begin{cases} h=2\\ k=-3\\ a=6\\ c=2\sqrt{10} \end{cases}\implies \cfrac{[y- (-3)]^2}{ 6^2}-\cfrac{(x- 2)^2}{ b^2}=1 \\\\\\ \cfrac{(y+3)^2}{ 36}-\cfrac{(x- 2)^2}{ b^2}=1 \\\\\\ c^2=a^2+b^2\implies (2\sqrt{10})^2=6^2+b^2\implies 2^2(\sqrt{10})^2=36+b^2 \\\\\\ 4(10)=36+b^2\implies 40=36+b^2\implies 4=b^2 \\\\\\ \sqrt{4}=b\implies 2=b\\\\ -------------------------------\\\\ \cfrac{(y+3)^2}{ 36}-\cfrac{(x- 2)^2}{ 2^2}=1\implies \cfrac{(y+3)^2}{ 36}-\cfrac{(x- 2)^2}{ 4}=1[/tex]
solved
general
11 months ago
3406