Given the functions f(x) = left parenthesis 2 x right parenthesis squared plus  x  minus 1 g(x) = x squared plus 3 x minus 3Find:A. f(x) + g(x) B. f(x) - g(x)C. 2f(x) + 2g(x)D. 2f(x) -2g(x)

Question
Answer:
I'm going to rewrite f(x) and g(x) so that I don't get confused. 

Based on your description: 

f(x) = (2x)[tex] ^{2} [/tex] + x - 1 simplified to 4x[tex] ^{2} [/tex] + x - 1

g(x) = x[tex] ^{2} [/tex] + 3x - 3

Now we handle parts A-D.

A. f(x) + g(x)

We combine like terms. 

4x[tex] ^{2} [/tex] + 5x[tex] ^{2} [/tex] + x + 3x - 1 - 3 = 5x[tex] ^{2} [/tex] + 4x - 4

B. f(x) - g(x)

Again combine like terms like normal except this time subtracting. 

4x[tex] ^{2} [/tex] - x[tex] ^{2} [/tex] + x - 3x - 1 - (- 3) = 3x[tex] ^{2} [/tex] - 2x + 2

C. 2f(x) + 2g(x)

Multiply, then again CLT

2f(x) = 8x[tex] ^{2} [/tex] + 2x - 2
2g(x) = 2x[tex] ^{2} [/tex] + 6x - 6

Combine like terms to get 10x[tex] ^{2} [/tex] + 8x - 8

D. 2f(x) - 2g(x) 

Use the same 2f(x) and 2g(x) terms and this time just subtract.

You get 6x[tex] ^{2} [/tex] - 4x + 4


solved
general 11 months ago 7188