What is the inverse of the function h(x) = 5/2x + 4
Question
Answer:
[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]Step-by-step explanation:Given function is:[tex]h(x) = \frac{5}{2}x+4[/tex]In order to find the inverse:Replacing h(x) with y[tex]y = \frac{5}{2}x+4[/tex]Replacing x with y and y with x[tex]x = \frac{5}{2}y+4[/tex]Solving for y[tex]x = \frac{5}{2}y+4\\x - 4 = \frac{5}{2}y+4-4\\x-4 = \frac{5}{2}y\\y = \frac{2}{5}(x-4)\\y = \frac{2x-8}{5}[/tex]Replace y with h^(-1)(x) [tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]Hence,[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]Keywords: Inverse, FunctionsLearn more about functions at:brainly.com/question/4361464brainly.com/question/4390083#LearnwithBrainly
solved
general
10 months ago
7998