how to prove this???
Question
Answer:
[tex]\cos^3 2A + 3 \cos 2A \\
\Rightarrow \cos 2A (\cos^2 2A + 3) \\
\Rightarrow (\cos^2 A - \sin^2 A) (\cos^2 2A + 3) \\
\Rightarrow (\cos^2 A - \sin^2 A) (1 - \sin^2 2A + 3) \\
\Rightarrow (\cos^2 A - \sin^2 A) (4 - \sin^2 2A) \\
\Rightarrow (\cos^2 A - \sin^2 A) (4 - (2\sin A \cos A)(2\sin A \cos A)) \\
\Rightarrow (\cos^2 A - \sin^2 A) (4 - 4\sin^2 A \cos^2 A) \\
\Rightarrow 4(\cos^2 A - \sin^2 A) (1 - \sin^2 A \cos^2 A)
[/tex]go to right side now
[tex]4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4( \cos^3 A - \sin^3 A)(\cos^3 A + \sin^3 A)[/tex]
use [tex]x^3 - y^3 = (x-y)(x^2 + xy + y^2)[/tex] and [tex]x^3 + y^3 = x^2 - xy + y^2[/tex]
[tex]4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4( \cos^3 A - \sin^3 A)(\cos^3 A + \sin^3 A) \\ \Rightarrow 4(\cos A - \sin A)(\cos^2 A + \cos A \sin A + \sin^2 A) \\ ~\quad \quad\cdot ( \cos A + \sin A)(\cos^2 A - \cos A \sin A + \cos^2 A)[/tex]
so [tex]\sin^2 A + \cos^2 A = 1[/tex]
[tex]4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4(\cos A - \sin A)(\cos^2 A + \cos A \sin A + \sin^2 A) \\ ~\quad \quad\cdot ( \cos A + \sin A)(\cos^2 A - \cos A \sin A + \cos^2 A) \\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 + \cos A \sin A )(1- \cos A \sin A ) \\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 - \cos^2 A \sin^2 A )\\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 - \sin^2 A \cos^2 A ) \\ \Rightarrow Left hand side[/tex]
solved
general
11 months ago
7585